PHYSICAL REVIEW B 81, 184420 (2010)
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We explore the equilibrium properties of a two-dimensional Ising spin model with short-range exchange and
long-range dipolar interactions as a function of the applied magnetic field H. The model is studied through
extensive Monte Carlo simulations that show the existence of many modulated phases with long-range orien-
tational order for a wide range of fields. These phases are characterized by different wave vectors that change
discontinuously with the magnetic field. In particular, the emergence of novel anharmonic phases that keep the
orientational order but are characterized by several wave vectors is studied in detail. We provide numerical
evidence supporting the existence of first-order transitions between modulated phases. At higher fields our
results suggest a Kosterliz-Thouless scenario for the transition from a bubble to a ferromagnetic phase.
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I. INTRODUCTION

Thin magnetic films have been the subject of intense at-
tention over the last two decades.' Most studies have been
motivated mainly by the technological applications of these
structures.* But, they also faced statistical physicists with the
challenge of trying to answer many foundational questions
regarding the role of microscopic interactions in the macro-
scopic behavior of a large system.

These quasi-two-dimensional structures show a large va-
riety of ordering effects including formation of striped states,
reorientation transitions, and bubbles formation in presence
of magnetic fields and hysteresis.>”” At the origins of these
phenomena is the competition between a short-ranged inter-
action favoring local order and a long-range interaction frus-
trating it on larger spatial scales. The role of the long-range
interaction is to avoid the global phase separation favored by
the short-ranged interaction promoting, instead, a state of
phase separation at mesoscopic or nanoscales. Then, it is not,
in general, a small perturbation,® but must be considered as
precisely as possible.

From a computational point of view, this means that the
frustrating interaction has to be accounted for by involving
all the lattice sites in the computation, which, in turn, limits
the actual system size that can be handled in Monte Carlo
simulations. On the other hand, to obtain exact results on
multiscale, multiinteraction systems is extremely difficult, so
that simulations are often the only source of information.

Model Hamiltonians taking into account short-ranged ex-
change ferromagnetic and long-range dipolar antiferromag-
netic interactions have been used to reproduce many of the
elemental features observed in experiments of magnetic
systems.” Unfortunately, and despite the obvious relevance
from the experimental point of view of the presence of an
external magnetic field, most of the numerical studies so far
have concentrated their attention on the zero magnetic field
case (H=0). This is in part because of the already very rich
and complex phenomenology obtained by tuning the
strengths of the exchange and the dipolar interactions, but
also because of the almost prohibitive computational cost of
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the simulations, even for moderated lattice sizes.

To fill this gap, we use extensive Monte Carlo simulations
to determine the role of an external magnetic field in the
thermodynamical properties of quasi-two-dimensional mag-
netic systems. We present results for systems where ex-
change and dipolar interactions are comparable and where
the anisotropy contribution to the Hamiltonian is very large.

The work is organized as follows. In Sec. II we present
the model and review some of its properties. In Sec. III we
give details about the Monte Carlo simulations and discuss
the motivation for the parameters used and its connections
with previous reports in the literature. Then, in Sec. IV we
present and discuss our results. This section is organized in
three parts, we first present and analyze the H-T phase dia-
gram of the model, then we provide some insight on the
ground-state structure of the different phases, and finally we
characterize the transitions between these phases. Finally, in
Sec. V the conclusions of the work appear.

II. MODEL

We consider a square lattice of Ising spins oriented per-
pendicularly to the plane of the lattice and interacting
through the dimensionless Hamiltonian

S,
H==02 85+ 5 -HXS, (1)
(if) i#j Tij i

where S;= £ 1 is the value of the spin at site i. The first sum
runs over all pairs of nearest-neighbor spins and the second
over all pair of spins in the lattice. The discreteness of S; is
consistent with infinite or very large magnetic anisotropy.’
The parameter 6=J,/J,; stands for the ratio between the
strength of the exchange and dipolar interactions, J, and J,
respectively. H is the magnetic field intensity (in units of J,;)
and r; is the distance, measured in crystal units, between
sites 7 and j.

This model, but in zero external magnetic field, has been
extensively studied.'®'* For example, it is now well under-
stood that in a wide range of values of & its ground state
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consists in stripes of antiparallel spins with a width that in-
creases with 8.2 Once the temperature is turned on, the situ-
ation becomes more complex and, in a J-T phase diagram,
one can recognize a zoology of phases, stripes of different
widths, paramagnetic phases, tetragonal, smectic, nematic,
and others.!'!3 Roughly speaking, at zero field the system
presents a first-order phase transition between a low-
temperature phase of stripes and a high-temperature tetrago-
nal phase with broken translational and rotational symmetry.
It was also shown!! that for a narrow window around 6=4
the model develops a nematic phase where the system has
short-range positional order but long-range orientational or-
der.

On the other hand, in Ref. 15 Garel and Doniach study
analytically the H-T phase diagram of a continuous Landau-
type model with dipolar interactions. They conclude that the
H-T plane is characterized by three different phases: stripes,
bubbles, and ferromagnetic. Their analysis also suggests a
scenario with fluctuation-induced first-order transitions'® be-
tween the phases or a second-order melting of the
Kosterlitz-Thouless'” type for the bubble-ferromagnetic tran-
sition. While some of these phenomenologies are confirmed
by our simulations, we will show below that the phase dia-
gram resulting from Hamiltonian (1) is even richer.

Numerical simulations using Langevin dynamics on
similar Landau-type models seem to support the general pic-
ture described in Ref. 15. In particular, in Ref. 19 the author
studies the behavior of the system under external magnetic
field, but focus his attention mainly on the role of metastable
configurations, the presence of hysteresis loops and memory
effects. Therefore, the predictions of Ref. 15 are still waiting
for conclusive numerical support.

For the particular case of Hamiltonian (1), the correctness
of the predictions of Garel and Doniach'’ is even less clear.
While at first one expects that the correspondence between
the standard ferromagnetic Ising model and the continuous
¢* model persists even in the presence of the dipolar term,
the existence of commensuration effects, typical of striped
patterns in discrete Ising systems, may alter this intuition.
For example, the authors of Ref. 14 studied the H-T phase
diagram of Hamiltonian (1) using Monte Carlo simulations
and found no evidence for the transition to a bubble phase,
suggested a continuous character for a stripe-tetragonal
boundary and reported some unexpected jumps in the mag-
netization versus temperature curves.

In this sense our work revisits these previous simulations
looking with more attention to the effect of the magnetic
field at low temperatures. Some of the results already seen in
Ref. 14 are confirmed and, we think, analyzed in more detail
and from a different perspective. Some results support the
predictions of Ref. 15, and others, to our knowledge, are
new, and enrich the already complex phenomenology of
these systems.

18-20

II1. SIMULATION

We centered our analysis on the value 6=4 which corre-
sponds to a zero-field ground state of perfect alternating
stripes of width 2=2. So, for the smaller system sizes con-
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FIG. 1. Phases diagram for a system of L=32 considering the
anharmonic zone; void circles and squares transition lines are first
order. The critical temperature for the transition to the tetragonal
phase at H=0 is shown with a colored square, the high-temperature
zone is represented with a slight shadow.

sidered we have eight periods of modulated stripes. In all
cases the size of the system L was properly commensurate
with the period of the H=0 modulated phase. Arlett et al.'*
used values of & between 6 and 8, having stripes of width
h=4 and 6, respectively. So, for the system sizes they con-
sider four or at most six periods of the modulated structures
are present. As we will discuss below this makes difficult to
interpret some of the consequences of the presence of H.

This value of d=4 is representative for proved first-order
stripes-tetragonal transition in H=0 but it is also known to be
on the order of real magnetic-frustrated systems seen in ex-
perimental works.!? Some connections between experimental
systems and values of relative strengths of interactions in
theoretical models can be found in Ref. 21. More recently,
Carubelli et al.” qualitatively reproduced detailed measure-
ments of magnetic changes in samples of Fe/Ni/Cu(001)
(Ref. 22) by means of a Heisenberg-spins model, very simi-
lar to Hamiltonian (1), using a value of §=6.

To build the phase diagram, the system is first initialized
in the equilibrium configuration at a fixed temperature and
zero magnetic field. To guarantee equilibration the magnetic
field is increased very slowly 10™*=AH =102 and for each
(H,T) point, we let the system relax for 7, = 10° Monte Carlo
steps (mcs) using a Metropolis dynamics. Once equilibrated,
the system evolves over other #,=10" mcs to measure the
physical quantities of interest. We impose periodic boundary
conditions to limit finite-size effects and explore different
values of temperature and field for linear system sizes up to
L=48. To account for the long-range interactions we imple-
ment the Ewald summation technique?® adapted to the par-
ticular case of the magnetic dipolar potential.>*

IV. RESULTS AND DISCUSSION
A. Phase diagram

The main result of this work is shown in Fig. 1. This is the
H-T phase diagram of the model represented by Hamiltonian
(D).

Four different zones are well defined in the diagram. For
low values of temperature and external magnetic field the
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FIG. 2. SB parameter in a system of L=32 as a function of the
field for T=1.2, the spots are some typical configurations.

system is in an oriented modulated phase of perfect stripes
characterized by a wave vector k=(0,7/2) and zero magne-
tization. Increasing the magnetic field, new modulated
phases, characterized by new wave vectors, and nonzero
magnetization appear. These new phases, keep the orienta-
tional order but are characterized by several wave vectors
(therefore we call them anharmonic phases) that depend on
the magnetic field. The properties of these phases and the
location of the transitions suffer from strong finite-size and
commensuration effects, so, in the diagram we represented
only one zone that, for the system size considered, contains
all the anharmonic structures. Similar phases were already
predicted within a mean-field scenario for an Ising model
with competing interactions J, and J; between nearest and
next-nearest neighbors in one direction of a cubic lattice
(ANNNI model).?

For still larger values of H we find a phase without ori-
entational order (bubble). Finally, increasing further the mag-
netic field the system becomes completely magnetized (fer-
romagnetic phase). At low H, and close to the stripe to
tetragonal transition the combination between thermal fluc-
tuations, commensuration and finite-size effects, and the ex-
citations due to the magnetic field makes the analysis of the
phase diagram too difficult. So, in this zone, the structure of
the phase diagram is still unknown, and we shadow this zone
in Fig. 1 to caution the reader about this.

Furthermore, it should be noticed that in Fig. 1 the
bubbles-ferromagnetic transition line does not converge to
the H=0 critical point as it was suggested in the literature."
This, despite numerical difficulties in the shadowed region,
follows from the different character of the variables used in
our work, discrete spins S;= =1, and continuous fields ¢(x)
in Ref. 15. In turn, this induces a different definition of the
ferromagnetic phase in both models. In the continuous
model, the ferromagnetic phase is defined as a homogeneous
phase of nonzero magnetization. In the discrete model, the
homogeneous phase is possible only when all the spins are
oriented in the same direction. Therefore while at low tem-
perature both phases are similar, at high temperatures where
the entropic effects are important, both phases are qualita-
tively different and we do not expect in our model a conver-
gence of the bubble-ferromagnetic line to the H=0 critical
point, but on the contrary, a divergence to large field values.
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FIG. 3. Evolution under increasing magnetic field for a system
of L=32: (a) SB parameter and magnetization for 7=1.2, (b) mag-
netic susceptibility for 7=1.2, and (c) SB parameter associated sus-
ceptibility for 7=1.2.

Now, to fix the ideas, let us concentrate our attention on
the results for one temperature. We define, following,12 the
so-called 7/2 rotational symmetry-breaking (SB) parameter:

My = 1y

n= , 2)

n, +ny

where n, (n;) is the number of vertical (horizontal) bonds
between nearest-neighbors antialigned spins. This parameter
takes the value 1 in a perfectly ordered stripe state while it
equals zero for any phase with 7r/2 rotational symmetry.

In Fig. 2 we represent the evolution of 7 as a function of
H for T=1.2 in a system with N=32X 32 spins. The zooms
show typical configurations for the corresponding values of
7. As can be seen, abrupt jumps separate clear plateaus of 7
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H=0.72

(e)

at three different values of the magnetic field, H=0.84, H
=1.34, and H=2.40. Each plateau reflects an underlying
symmetry of the system.

A deeper understanding of the phase diagram and spe-
cially on the character of the jumps separating the different
plateaus is obtained analyzing Fig. 3 where the magnetiza-
tion, the magnetic susceptibility, and the susceptibility asso-
ciated to the rotational order parameter 7 (2Tx,=(7")
—(n)?) are plotted. Increasing from zero the external mag-
netic field, the rotational symmetry-breaking parameter 7,
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FIG. 4. Evolution of structure
factor in a system of L=32 for in-
creasing magnetic field.

and the magnetization show various plateaus separated by
abrupt jumps [see Fig. 3(a)]. These jumps result from the
discrete properties of the lattice where the model is defined.
Discrete changes in the field are required to change from one
stable structure of stripes to another.

The existence of these jumps is also clearly reflected in
both susceptibilities [see Figs. 3(b) and 3(c)]. Three different
peaks are well defined in the magnetic and the orientational
susceptibilities at the same transition points where the orien-
tational order parameter and the magnetization jump.
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FIG. 5. Main harmonic contributions to the equilibrium configu-
ration structure factor for increasing H in a system of L=32. Other
ky contributions remain always under 0.2.

For H>3, the magnetization starts to grow linearly with
H but the rotational symmetry-breaking parameter is zero.
The system is in the so-called bubble phase already predicted
by Garel and Doniach'3 for the Ginzburg-Landau model with
dipolar interaction. Finally at very high fields (H>5) the
system is completely magnetized, m=1 and 7=0.

The jumps in the order parameter and the peaks in the
susceptibilities suggest the existence of different thermody-
namic phases at each plateau of 7. To characterize the prop-
erties of these phases we look at the form of the structure
factor, S(k), in each plateau

2>. (3)

() = < X s

Figure 4 shows the structure factor of the system for dif-
ferent values of H. Each plot is obtained by the average of
5000 equilibrium configurations. At very low magnetic field,
the system is characterized by a peak at one wave vector k
=(0,7/2). Increasing H new peaks appear in S(k). First,
with component k= (0,k,#0), still signaling the presence of
orientational order in one direction. This change in the form
of the structure factor is not evident a priory. One may, for
instance, expect that the external magnetic field unbalances
the number of up-down spins creating defects that breaks the
orientational order. Our results suggest a different scenario,
where if properly equilibrated at low temperatures, new
structures, without evident defects, keep the orientational
long-range order of the original ground-state structures.
Then, at higher magnetic fields, (see in the figure H=2.52)
S(k) becomes symmetric in both axis, the system looses the
orientational order and reaches the bubble phase. Finally the
magnetization saturates and only the peak at k=(0,0) sur-
vives.

Figure 5 shows the contribution of the three principal
wave vectors k= (O,kf,) characterizing the evolution of the
system configurations with the magnetic field. Initially, the
perfect stripes phase is characterized, as we know, by a wave
vector k=(0,7/2). At H~0.84 a new wave vector k
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FIG. 6. Fits of correlation numerical data with the function in
Eq. (4); correlation best fits for two particular values of applied field

=(0,77/16) dominates the system, still indicating the pres-
ence of oriented stripes. Increasing further the magnetic field,
at H=~1.34, S(k) changes again, and k=(0,37/8). The sud-
den rise and decay of each wave vectors reflect again the
abrupt changes in the symmetry of the system.

We also calculated the directed spatial correlation func-
tions for the system

1
Cx(r) = ]T’E 2 <Sx,ny+r,y>7
y x

1
Cy(r) = K/E 2 <Sx,ny,y+r>
y X

which reveal interesting information about the equilibrium
states. In particular, we tried to fit the numerical data with a
function of the form

C(r)y=Ae "¢ cos(kr— ) + Br®+D (4)

that has been proposed for the approximated continuum
model.?®?” Figure 6 shows the corresponding fits for aver-
aged equilibrium configurations at two values of H.

From these fits we can gain information about the depen-
dence with H of the correlation length of the modulated do-
mains (&), the main wave vector of the phase (k) and the
power-law strength (a), respectively. In particular, we can
see in Fig. 7 the behavior of k as a function of H. The
plateaus in k coincide with the principal wave vectors (see
Fig. 5) characterizing the different stripe structures.

To our knowledge these new anharmonic phases have not
been predicted before in a model with dipolar interactions.
They are absent in the continuous model, where the effect of
the magnetic field in the striped phase is considered assum-
ing that below the bubble phase the stripes persist in an in-
creasing magnetized background.!> They are present in the
ANNNI model, but differently from Eq. (1), the ANNNI
model is anisotropic by construction.

On the other hand, in the phase diagram resulting from
the simulations in Ref. 14 the orientational order parameter
changes continuously from a finite value to zero at a given
field (see Fig. 7 in that reference). The reasons for these
differences in the phase diagrams are not clear. We are
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FIG. 7. Best fitted k value as a function of H in a system of L
=32.

tempted to think that looking at the dependence of % for
lower values of the temperature the authors in Ref. 14 could
find similar jumps and phases. Of course, having a large &
and hence larger stripe widths the anharmonicity properties
of their structures may be hidden by strong finite-size effects.

B. Ground-state analysis

To study what kind of structures are responsible of the
anharmonic phases, we tested the energy of a large number
of configurations of alternating S=—1 and 1 stripes. The
width of the S=—1 stripes was varied from 1 to 2 while the
width of S=1 stripes was varied from O to L, as it is expected
for the striped configurations in the presence of a field H
>(. Thus, borrowing the notation from Ref. 28 we denoted
as h24 one configuration with stripes of width 2 against the
field and stripes of width 4 in the field direction, repeated
periodically.

The energies of these configurations are represented in
Fig. 8 as a function of H. At H=0, the ground state of the
system corresponds to the h2 phase. By increasing H the
system reaches a critical field H,, where perfect stripes be-
comes energetically unfavorable with respect to the anhar-

ferro —
h62
h61 e
h42

h32 e 1
h2223
h2 -
minimum__——— |

anharmonic configurations energy

FIG. 8. Energy as function of H in a system of L=32. Different
anharmonic configurations at 7=0 and the ground-state energy
(continuous line) are shown. H,, is the critical field at which perfect
stripes are lost.
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FIG. 9. Critical fields changing configurations at 7=0 versus
system size. H, and ferromagnetic lines are bolded for clarity but
vertical lines were the only region explored and no interpolation is
obvious. A schematic bubble line is also drawn (see the text).

monic configuration (h2322,k,=77/16). For larger fields, a
new anharmonic configuration becomes the ground state
(h32,k,=37/8). Further increasing H the situation repeats
with the appearance of new anharmonic states. How many of
these anharmonic configurations may appear depend strongly
on temperature and commensuration effects. The correspond-
ing ground-state energies of the system, considering only
these anharmonic configurations is represented in Fig. 8 with
a continuous line. This line corresponds to the lower energy
curve obtained from the superposition of the energies of the
different configurations as a function of H.

One may wonder whether these are finite-size effects, and
a nonorientatied ground-state structure may dominate the be-
havior of the infinite system at low H. To test our predic-
tions, this analysis was repeated for different system sizes,
N=L X L. Figure 9 suggests that independently of the system
size, the first critical field H, always appear in the low-field
region where the perfect stripes become unstable. This value
defines a zone in which anharmonic structures establish,
mainly in the form of £2223 or h23 configurations depending
on commensuration effects.

The transition between anharmonic and bubbles phases
remains around H=2.4 for system sizes up to L=48, this
have been used to draw a schematic broken line in Fig. 9.
Since the bubble phase establishes because of entropic ef-
fects, this is likely to be valid for large system sizes. In all
tested cases the critical field remains well below this sche-
matic transition, supporting the existence of the anharmonic
phases obtained for L=32 in the thermodynamic limit and
giving rise to a rather wide anharmonic zone.

C. Phase transitions

Unfortunately the computational cost associated with the
presence of long-range interactions and the commensuration
effects in this kind of systems, prevent us from doing a
proper finite-size scaling analysis to define the character of
the transitions. Instead, we focused our attention in systems
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of sizes L=32 and 40 and study the histograms of the energy
and the order parameter.

1. Evidence for first-order phase transition

The jumps in the susceptibilities and the discontinuities in
n in Fig. 3 already suggest the first-order character of the
transitions between the different orientational phases and

best fit of &

FIG. 11. Best fit of correlations by expression in Eq. (4). Cor-
relation length of modulated domains as a function of H in a system
of L=32, for H below the bubbles region £é=L.

from the last anharmonic phase to the bubble phase. How-
ever, a stronger evidence is given in Fig. 10. These histo-
grams were calculated for systems of N=40X40 spins, sam-
pling 107 mcs after relaxation for each value of H and
considering 10° values of energy and 7.

For the three transitions considered, the figure shows that,
increasing H, the histograms of the order parameter and en-
ergy evolve from unimodal functions at low magnetic fields,
to a two-peak-shape structure, that disappears at higher mag-
netic fields giving rise to the new thermodynamic phase. For
the particular case of the anharmonic-anharmonic transition
[Figs. 10(c) and 10(d)], the difference in energies between
the two structures is so small that the histograms for the
energy appear always as unimodal.

On the other hand, one must note that while in the first
two transitions, the peak in P(E) moves from high to low

H=4.02 H=5.1

H=6.0

FIG. 12. Some field values involved in the transition from
bubble to ferromagnetic phases. Typical configurations for a L=48
system.
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FIG. 13. Field values involved in the transition from bubble to
ferromagnetic phases. Specific heat and magnetic susceptibility ver-
sus field in a system of L=32.

energies, in the anharmonic to bubble transition it moves
from low to high energies. In this transition, the system
looses the orientational order and therefore E increases. This
is compensated by the presence of strong entropic effects
that, in this more disordered structure, dominate the equilib-
rium state of the system.

It is relevant for the definition of the anharmonic to
bubble transition the appearance at high fields of a nonzero
correlation length ¢ for the modulated domains (see Fig. 11).
Fitting the spatial correlations in the bubble phase with ex-
pression in Eq. (4) we obtain the expected inverse propor-
tionality of & with the applied magnetic field.?

2. Evidence for a Kosterliz-Thouless transition

Figure 12 shows some views of the domain structure of
the system close to the bubble-ferromagnetic transition. They
suggest that increasing H the bubble phase dilutes in a fer-
romagnetic environment. This support the predictions in Ref.
15 where the authors proved that within a Ginzburg-Landau
approximation, dislocation of the bubbles structure may lead
to a second-order melting transition of the Kosterliz-
Thouless type. The continuous change in energy and magne-
tization [see Fig. 3(a)] and the saturation of the response
functions close to this transition (see in Fig. 13 zooms of the
magnetic susceptibility and the specific heat close to this
transition) also support these predictions.

One last indication in favor of this scenario, comes from
the spatial correlation functions of the system. In Fig. 14 we
show the value of « obtained by the fits of the correlation
functions with expression in Eq. (4). The sudden rise of «
close to H~4.5 is also consistent with a Kosterliz-Thouless
transition.

V. CONCLUSIONS

We developed extensive numerical simulations to charac-
terized the phase diagram of the model given by Eq. (1). This
Hamiltonian presents at very low field and temperature a
phase of symmetric stripes and zero magnetization. Increas-
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FIG. 14. Best fit of correlations by expression in Eq. (4). Power
exponent as a function of H in a system of L=32.

ing the field, new thermodynamical phases appear, still with
orientational order but with nonzero magnetization and char-
acterized by different wave vectors. As far as we know, the
existence of these thermodynamic phases have not being
proposed before for systems with dipolar interactions. For
larger values of H, the system enters into the bubble phase
loosing the orientational order. Then, at larger fields, the sys-
tem becomes fully magnetized.

We present evidence supporting the idea that all, but the
bubble to ferromagnetic, are first-order transitions. This is
also in agreement with analytical results that predicted that
the stripes to bubbles transition is of the Brazovskii'® type.
On the other hand, close to the bubbles to ferromagnetic
transition, our simulations show the existence of a continu-
ous order parameter, the saturation of the response functions
and algebraically decaying spatial correlations, supporting
all, a Kosterliz-Thouless scenario.

Finally, it is worth to note the interesting parallelism be-
tween these anharmonic phases and the hybrid states found
for Hamiltonian (1) at zero field in Ref. 29. There, through
mean-field calculations, the authors suggested a possible in-
terpretation of nematic phases as a competition between
striped structures of different widths. Moreover, they found
Kosterliz-Thouless features in the transition between striped
and nematic phases. To clarify these issues and to completely
define the phase diagram [Eq. (1)] more accurate simulations
are expected close to the H=0 critical temperature.
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